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We have investigated a one-point closure model for compressible turbulence based on third- and higher order 
cumulant discard for systems undergoing rapid deformation, such as might occur downstream of a shock or other 
discontinuity. In so doing, we find the lowest order contributions of turbulence to the mean flow, which lead to 
criteria for Adaptive Mesh Refinement.

I. Introduction†  
 
Rapid distortion theory (RDT) as originally applied by Herring1 closes the turbulence 

hierarchy of moment equations by discarding third order and higher cumulants. This is similar to 
the fourth-order cumulant discard hypothesis of Millionshchikov,2 except that the 
Millionshchikov hypothesis was taken to apply to incompressible homogeneous isotropic 
turbulence generally, whereas RDT is applied only to fluids undergoing a distortion that is 
“rapid” in the sense that the interaction of the mean flow with the turbulence overwhelms the 
interaction of the turbulence with itself. It is also similar to Gaussian closure, in which both 
second and fourth-order cumulants are retained. 

Motivated by RDT, we develop a quadratic one-point closure for rapidly distorting 
compressible turbulence, without regard to homogeneity or isotropy, and make contact with two 
equation turbulence models, especially the K-ε and K-L models, and with linear instability 
growth. In the end, we arrive at criteria for Adaptive Mesh Refinement in Finite Volume 
simulations.  

II. Favre Averaged Navier-Stokes Equations 
 
Using a notation in which a comma denotes differentiation, and repeated indices are 

automatically summed over, we write the Navier-Stokes equations as3 

! 

"t# + #u j( )
, j

= 0
 (1) 

! 

"t #ui( ) + #uiu j( )
, j
$ Pij, j = #gi (2) 

! 

"t #E( ) + #Eu j( )
, j
$ uiPij( )

, j
$ %T

, j( )
, j

= #u jg j
 (3) 

Here Pij is the tensor 

! 

Pij = "p#ij +$ ij = "p#ij + %uk,k#ij + µ ui, j + u j,i( ) (4) 

µ and λ are the so-called first and second viscosities, which are normally related by 
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! 

µ + 3/2( )" = 0  (5) 

κ is the thermal conductivity, gi represents a “gravitational” acceleration, and p is the pressure. 
We use Favre (i.e., density-weighted) averages4 to render the Navier-Stokes equations 

quadratic in the mean and fluctuating variables, while maintaining explicit conservation form so 
that algorithms for the resulting closure can be numerically stable.5  

Favre averages are defined for any quantity w by 

! 

"w = "w + " # w  (6) 

centered such that  

! 

" # w = 0  and 

! 

" # = 0  (7) 

and normalized so that 

! 

˜ w =
"w

" 
# "w = " ˜ w  (8) 

Throughout this paper a tilde denotes Favre averaging, a bar denotes Reynolds averaging, 
and a prime denotes fluctuation with respect to the Favre average. A double prime is used to 
denote fluctuation with respect to the Reynolds average.   

We now use (A2) and discard averages containing 3 or more primed quantities (third and higher-
order cumulants) to write the mean flow equations 

! 

"t# + # ̃  u j( )
, j

= 0  (9) 

! 

"t # ̃  u i( ) + # ̃  u i ˜ u j( )
, j

+ # $ u i $ u j( )
, j
% P ij, j = # gi  (10) 

! 

"t # ˜ E ( ) + # ˜ E ̃  u j( )
, j

+ # $ E $ u j( )
, j
% ˜ u iP ij( )

, j
% $ u iPij( )

, j
% &T 

, j( )
, j

= # ̃  u jg j

 
(11) 

 
We can also use (A4) and (A5) to eliminate the Reynolds averages of P and T  

! 

"t # ̃  u i( ) + # ̃  u i ˜ u j( )
, j

+ # $ u i $ u j( )
, j
% ˜ P ij, j +

$ # $ P ij, j

# 
= # gi  (10a) 

! 

"t # ˜ E ( ) + # ˜ E ̃  u j( )
, j

+ # $ E $ u j( )
, j
% ˜ u i

˜ P ij( )
, j
% $ u i $ P ij( )

, j
% & ˜ T 

, j( )
, j

+
˜ u i

# 
$ # $ P ij

' 

( 
) 

* 

+ 
, 

, j

+
˜ P ij

# 
$ # $ u i

' 

( 
) 

* 

+ 
, 

, j

+
&

# 
$ # $ T 

, j

' 

( 
) 

* 

+ 
, 

, j

= # ̃  u jg j

 (11a) 
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It is apparent that we must either preserve a distinction between Favre and Reynolds averaged 
quantities, or carry additional terms in our equations. For now, we choose the former. We see 
that the main advantage of Favre averages is to preserve the averaged equation of mass 
conservation, even when the fluid is compressible. 

If we add (2) multiplied by u’j to itself with i and j interchanged, we can obtain after some 
algebra 

! 

"t # $ u i $ u j( ) + ˜ u k# $ u i $ u j( )
,k

+ ˜ u i,k# $ u k $ u j + ˜ u j,k# $ u k $ u i % $ u iPjk,k % $ u jPik,k = 0
 (12) 

Similar processes involving (2) and (3) yield 

! 

"t # $ E $ u i( ) + ˜ u j# $ E $ u i( )
, j

+ ˜ u i, j# $ E $ u j + ˜ E 
, j# $ u i $ u j %

˜ P kj, j
$ u i $ u k %

˜ P kj
$ u i $ u k, j % ˜ u k, j

$ u iPkj % ˜ u k $ u iPkj, j

%&
, j
$ u iT, j %& $ u iT, jj % $ E Pij, j = # $ u i $ u jg j

 (13) 

! 

"t # $ E $ E ( ) + ˜ u j# $ E $ E ( )
, j

+ 2 ˜ E 
, j# $ E $ u j % 2 ˜ P ij, j

$ E $ u i + ˜ P ij $ E $ u i, j + ˜ u i, j
$ E Pij + ˜ u i $ E Pij, j[ ]

%2 &
, j

$ E T
, j +& $ E T

, jj[ ] = 2# $ E $ u jg j

 (14) 

 

We will also need the following three differential equations 

! 

"t
# $ # $ + $ # $ # u j( )

, j
+ $ # $ # u j, j = 0 (15) 

! 

"t # $ # $ u i( ) + # 
, j# $ u i $ u j + # 2 $ u i $ u j, j % $ # $ P ij, j = $ # $ # gi  (16) 

! 

"t # $ # $ E ( ) + # # $ E $ u j( )
, j
% # # $ E 

, j
$ u j %

˜ P ij, j
$ # $ u i + ˜ P ij $ # $ u i, j + ˜ u i, j

$ # $ P ij + ˜ u i $ # $ P ij, j

%&
, j
$ # $ T 

, j %& $ # $ T 
, jj = $ # $ u jg j

 (17) 

 
Equation (15) may be derived by multiplying (1) by ρ and averaging, then subtracting the 
product of (9) multiplied by ! . Similar procedures yield (16) and (17). To see that equations 
(9)—(17) are closed, we use (4) and (A5) to expand P and its derivatives. 

! 

" w Pij = # " w " p $ij + " w " u k,k%$ij + µ " w " u i, j + " w " u j ,i( ) #
˜ P ij

& 
" & " w 

 (18) 

! 

" w Pij, j = # " w " p 
,i + " w " u j, j$,i + µ

, j
" w " u i, j + " w " u j ,i( ) + " w " u j , ji $ + µ( )$ + µ " w " u i, jj #

˜ P ij, j

% 
" % " w 

 (19)
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Substitution of ρ, E, and ui for w in equations (18) and (19) completes the closure. Thus, we have 
a turbulence closure consisting of nine differential equations supplemented by two algebraic 
relations. The remaining variables, p and T, are related to ρ and E through the material equation 
of state. We list equations for ideal gases in Appendix B. 

III. Two-Equation Models and Instabilities 
 
If we use the standard definition of turbulent kinetic energy per unit mass6, 

! 

K =
1

2
" u j " u j  (20) 

 
then from equation (12) 

! 

"t # K( ) + ˜ u k# K( )
,k

+ ˜ u j,k# $ u k $ u j % $ u jPjk,k = 0  (21a) 

 
 Using (A5) and a little algebra, this becomes 

! 

"t # K( ) + ˜ u k# K( )
,k

+ ˜ u j,k# $ u k $ u j + $ u k $ p 
,k % $ u j $ & jk( )

,k
+

˜ P jk,k

# 
$ # $ u j + # ' = 0

 (21b) 

where we have used the standard definition for the turbulent kinetic energy dissipation rate, 

! 

" # = $ u j ,k $ % jk = & $ u j, juk,k + µ $ u j,k $ u j ,k + $ u j,k $ u k, j( ) (22) 
 

To derive the equation for ε we use (1) to eliminate the convective derivative of ρ from (2, 
multiply the result by w and Reynolds average, using (10) to eliminate mean flow quantities. 
Realizing that the terms multiplying w’ must sum to zero, we divide by 

! 

"  and take their gradient 
with respect to j. which must also be zero. We then replace w’ by each of the terms of 

! 

" # ij  to 
obtain after some algebra 

! 

"t # $( ) + 2 % & ij ˜ u k % u i'k + ˜ u i,k % u k '
Pik,k

# 

( 

) 
* 

+ 

, 
- 

, j

= 0 (23a) 

If we expand terms and eliminate Reynolds averaged quantities using (A5), we obtain 

! 

"t # $( ) + 2 ˜ u k % & ij % u i'k + ˜ u i,k % & ij % u 
k
'

% & ij % P ik,k

# 
+

˜ P ik,k

# 
% # % & ij

( 

) 
* 

+ 

, 
- 

, j

'2 ˜ u k % & ij, j
% u i'k + ˜ u i,k % & ij, j

% u 
k
'

% & ij, j
% P ik,k

# 
+

˜ P ik,k

# 
% # % & ij, j

( 

) 
* 

+ 

, 
- = 0

 (23b) 

Although there is no “first principles” way to derive a mixing length for a K-L model, we can 
formally write7 
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! 

L =
K
3 / 2

"
 (24) 

 
Obviously, the equations of this closure do not reduce to those of linear instability theory, 

because they are explicitly quadratic in the fluctuating variables (see Appendix C). This suggests 
that the way to initialize our closure is to use the results of linear perturbation theory to set the 
initial amplitudes and growth rates of the fluctuating velocities. To make this explicit, we could 
separate the Navier-Stokes equations into mean and fluctuating components, make the usual 
assumption of a commoving frame, which sets the mean components equal to zero, and solve for 
the fluctuating components (without averaging) in the incompressible regime. This would simply 
reproduce the results of classical instability theory, which we would then “plug in” to the 
equations in section II or III above. 

IV. Discussion & Summary 
 
We now have a model for compressible turbulence that is closed, and, unlike two-equation 

models, retains all the Reynolds stresses. However, it does not retain third-order cumulants, and 
therefore does not capture the vortex stretching which leads to the Kolmogorov cascade of 
energy from larger to smaller scales of turbulence, and on to dissipation. Thus we expect this 
model to be valid only for some period of time (or distance) after a flow undergoes a rapid 
distortion, such as might be produced by the passage of a shock, before the full turbulent cascade 
has had time to develop. We therefore suggest that this model might be useful as a “bridge” 
between models of linear instability growth and fully developed turbulence. 

There is, however, another way to use this model. Let us assume that we are using a Finite 
Volume (FV) scheme in which the mean flow and turbulent quantities are Favre-averaged within 
each grid cell and the time-step8. In this case, the quadratic Favre-averaged turbulent quantities 
are the lowest-order corrections to the mean flow due to lack of grid resolution. Thus one might 
refine and de-refine an Adaptive Mesh Refinement (AMR) scheme based on whether the 
averaged turbulent quantities we have introduced (and their growth rates) are negligible 
compared to the mean flow quantities, for example 

! 

" ̃  u i ˜ u j( )
, j

>> " # u i # u j( )
, j

 (25) 

 
This closure could be implemented in a Direct Numerical Simulation (DNS) using finite 

volumes in a straightforward (although possibly tedious) manner by including the Favre-
averaged fluctuating terms and their evolution equations into the code. Such a code might then 
be called a quadratic Favre Averaged Navier Stokes (FANS) or a Favre Averaged Finite Volume 
(FAFV) simulation. 

Finally, material strength could be included in this model by modifying Pij to include terms 
representing stress and plastic strain rate effects. 
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Appendix A: Favre and Reynolds formulas 

Here we collect a few useful formulas regarding Favre and Reynolds averages. 

! 

"wv = " ˜ w + # w ( ) ˜ v + # v ( ) = " ˜ w ̃  v + " # w # v  (A1) 

where (7) eliminates “cross terms” between averaged and fluctuating quantities, and the right-
most term follows from the hypothesis of third-order cumulant discard. The meaning of this 
quasilinear approximation has been previously discussed.9 

Similarly, we can express 

! 

" "wv( )
, j

= "w "v( )
, j

+ "w
, j"v

= "w + " # w ( ) "v( )
, j

+ " # v ( )
, j

$ 
% & 

' 
( ) 
+ "w

, j + " # w 
, j( ) "v + " # v ( )

= " " ˜ w ̃  v ( )
, j

+ " " # w # v ( )
, j

 (A2) 

The Favre averages appear as a consequence of the normalization (8), cross terms are again 
eliminated by (7), and fluctuations of the density are eliminated by our hypothesis of third-order 
cumulant discard. 

We can eliminate Reynolds averaged quantities and Reynolds averages of single Favre 
fluctuating quantities by noting that for any quantities w and v, 

! 

" # w = 0 = " + # " ( ) # w $ # w = %
# " # w 

" 
 (A3)  

! 

w = ˜ w + " w = ˜ w + " w = ˜ w #
" $ " w 

$ 
 (A4) 

! 

" w v = " w " v +
# 

# 
" w ˜ v 

$ 

% 
& 

' 

( 
) = " w " v +

˜ v 

# 
# " w 

$ 

% 
& 

' 

( 
) = " w " v +

˜ v 

# 
# " w * " # " w ( ) = " w " v *

˜ v 

# 
" # " w 

 (A5) 

 

Appendix B: Ideal Gases 

For an ideal gas we can write 

! 

" w p = # $1( )% " e " w = # $1( ) % " E " w $ ˜ u j % " w " u j[ ] (B1) 

! 

" w p
,i = #

,i + # $1( )% 
,i[ ] " E " w $ ˜ u j " w " u j[ ] + # $1( )% " E 

,i
" w $ ˜ u j " w " u j ,i $ ˜ u j,i " w " u j[ ]

 (B2) 
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and 

! 

" w T
, j = " w e

, j #
cv, j

cv

2
" w e  (B3) 

! 

" w T
, jj = " w e

, jj #
cv, j

cv

2
" w e
, j + 2

cv, j( )
2

cv

3
#

cv, jj

cv

2

$ 

% 

& 
& 

' 

( 

) 
) 
" w e  (B4) 

where 

! 

" w e = " w E #
˜ u j

2
" w u j + " w " u j( )  (B5) 

! 

" w e
, j = " w E

, j # ˜ u k, j
" w " u k # ˜ u k " w uk, j  (B6) 

! 

" w e
, jj = " w E

, jj # ˜ u k, jj
" w " u k # ˜ u k " w uk, jj # ˜ u k, j

" w uk, j + " w " u k, j( ) (B7) 

The reader should also note that 

! 

p = " #1( ) $ ˜ E #
1

2
$ ̃  u i ˜ u i #

1

2
$ % u i % u i

& 

' ( 
) 

* + 

˜ p = $ p # " #1( ) % $ % E [ ]
 (B8) 

! 

c
v
T " E #

1

2
˜ u 

i
˜ u 

i
+ $ u 

i
$ u 
i( ) + ˜ u 

i

$ % $ u 
i

% 
 (B9) 

 

Appendix C: Incompressible Flows 

 
In this appendix we assume that the flow is incompressible and thus divergence free. Density 

fluctuations vanish, which erases the distinction between Favre and Reynolds averages and their 
fluctuations (see A4).  We will retain our notation for continuity, however. Equation (10) reduces 
to 

! 

"t
˜ u i + ˜ u i ˜ u j + # u i # u j +

˜ p 

$ 
% gz&ij

' 

( 
) 

* 

+ 
, 

' j

= 0  (C1) 

which can be further simplified by expressing the mean and fluctuating components of u as 
gradients of potentials and interchanging the order of derivatives. 
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! 

"t
˜ u i +

˜ u 
2

2
+ K +

˜ p 

# 
$ gz

% 

& 
' 

( 

) 
* 

' i

= 0 (C1b) 

 
Similarly, equations (21) and (23) reduce to 
 

! 

"tK + ˜ u j # u j # u 
k

+
# u k # p 

$ 

% 

& 
' 

( 

) 
* 

,k

= 0  (C2) 

! 

"t# +
4µ

$ 
˜ u k % u i, j

% u k( )
,i

+
% u i, j

% p 
,i

$ 

& 

' 
( 

) 

* 
+ 

, j

= 0  (C3) 

where we have used 

! 

" # ij $ 2µ " u i, j  (C4) 

We also note that 

! 

" # $ 2µ % u i, j
% u i, j  (C5) 
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